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A study is made of the effect of an increase in the viscosity of a melt with cool- 
ing on the initiation and development of fiber "draw-resonance" oscillations. 
The effect of heat transfer on the amplitude-frequency characteristics of fibers 
formed under nonisothermal conditions in the stable region is also investigated. 

i. A model in which the melt is considered to be a Newtonian fluid with a constant vis- 
cosity is widely used in studies of the dynamics of fiber formation. In this model, flow 
in the fiber is examined in a quasi-one-dimensional approximation. The inertial and capillary 
forces, along with gravitational forces and friction against the air, are small compared to 
viscous forces in the fiber and are ignored [I, 2]. The model, quite satisfactory for glass 
fibers, makes it possible to study loss of stability ("draw resonance") and the response 
of the output parameters of the fibers to various perturbations during stable formation under 
isothermal conditions [3-5]. The model was also used to study the effect of a change in the 
viscosity of the melt on nonsteady formation [6-8]. Meanwhile, the function ~(x) was assigned 
independently rather than determined in accordance with the solution of the heat-propagation 
equation. The goal of the present work is to study the effect of heat exchange with the gase- 
ous environment on the critical (from the point of view of loss of stability) draw ratio and 
on the response of the fiber parameters to different sources of perturbations under conditions 
of stable formation. 

We will examine quasi-one-dimensional equations of continuity, momentum (in a noninertia! 
approximation), and heat propagation: 
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The term characterizing heat conduction in the fiber was omitted from the heat-propagation 
equation, which is physically valid. 

We will consider both forced convective heat removal and radiative heat removal. Thus, 
the heat flux on the surface of the fiber is equal to 

The parameter of convective heat transfer S z was calculated by the integral method of boundary- 
layer theory in [9] for the case of laminar flow in the air boundary layer surrounding the 
fiber. In accordance with [9], the relation $i = Sz(x) is determined by numerical integration 
[together with (i)] of a system of two ordinary differential equations Sa' =~(~', Va2), 
Bl,x = % ($', $i, Va2) �9 The expressions for the functions ~p and (Pl were presented in [9]. 

The initial and boundary conditions for Eqs. (i): 
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Fig. i. Suppression of oscillations of 
fiber parameters due to an increase in 
viscosity with cooling of the melt: E = 
39.6; 0 = 0 (solid line); @ = 7 (dashed 
line). 

t = 0, a = a ,  (x), V ~ V ,  (x), T : T ,  (x), 

Ix = 0 ,  a = ao (t), V = Vo (t), T = To (t), ( 3 )  
t>0[x- =L, V=V~(t). 

We assign the cross-sectional area, velocity, and temperature in the initial section of the 
fiber (hypothetically on the edge of the draw plate) and the rate of winding of the fiber 
on the takeup reel. The calculations were performed with the following values of the dimen- 
sionless criteria determining the solution: R I = 0.207.10 -3 , C = 1.043, N m 105 , Re = 382.17, 
Pr = 0.69, Z m 107; also, T=/T0 = 0.16 (here, the value of T o is taken for a steady-state 
regime); e = i. The draw ratio E, determined by the steady-state values of fiber takeup and 
feed velocity (V I = const and V 0 = const), was varied in the calculation along with the dimen- 
sionless energy of activation of viscous flow 0. 

In studying the stability of formation, the stated problem was solved numerically. First 
we found the steady-state solution with boundary conditions which were independent of time. 
The nonsteady solutions were represented in the form 

a = a ,  (x)[1 + ~ ( x ,  t)], V = V ,  (x)[1 + p(x,  t)], 

T = T ,  (x) [1 + y (x, t)], ( 4 )  

(x, o) : p (x, o) = ~ (x, o) = o. 

The stationary distributions that were found were used as the initial distributions of radius, 
velocity, and temperature. 

System (1)-(2), written relative to perturbations ~, $, and 7, was solved numerically; 
no linearization was performed. The perturbation of the steady solution in the calculations 
was an instantaneous increase in takeup velocity at the moment t = 0. It turned out that 
cooling of the fiber, with a corresponding increase in the viscosity of the fluid, leads to 
expansion of the range of stable formation (Fig. i). The results for the isothermal case 
(0 = 0) are shown by the solid line - the perturbations increase and formation is unstable. 
The perturbations in the nonisothermal case (dashed line) decay - formation is stable, al- 
though E > E,. Here E, = 20.22 is the critical value at which loss of stability occurs in the 
isothermal regime [5]. 

The dashed straight line in Fig. i shows the new level corresponding to the steady-state 
solution; henceforth, the time is referred to L/V I and the coordinate x is referred to L (the 
figure corresponds to the fiber cross section on the takeup reel, x = i). When 0 = 7, forma- 
tion is stable to E m 70, which agrees with the results obtained in [i0] in a numerical solu- 
tion of a linear eigenvalue problem. A further increase in 0 should ensure stable formation 
with even larger values of the draw ratio. However, the stabilizing effect connected directly 
with the increase in 0 may not be very great. Thus, with E ~ 90, oscillations were seen up 
to @ = 16 in the calculations. The point is that convective and radiative cooling in the 
model problem being examined (the length of the fiber of Newtonian fluid is not great - 10 
cm) ensure a temperature drop of 30-40%. Thus, even with fairly large values of @, the in- 
crease in viscosity is not large enough to suppress oscillations in the outlet section of 
the fiber. A basic limitation on the possibility of stabilizing the oscillations is the 
"saturation" of the steady-state fiber configuration with an increase in 0 - the configura- 
tion nearly ceases to change. Thus, in accordance with the qualitative conclusions in [5], 
a further increase in 0 will not help expand the range of stable formation. Considering that, 
according to [ii], heat removal increases sharply with transverse blowing of air over the 
flow, it can be concluded that the use of such measures in commercial fiber production is 
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Fig. 2. Oscillations of the outlet radius of the cooling 
fiber with a fairly large value of the draw ratio: E = 186; 
O = 7. 

Fig. 3. Effect of cooling on the amplitude-frequency char- 
acteristic of the fiber; E = 16. 

partly responsible for minimizing "draw resonance." The results of the calculations in [i0] 
make it possible to evaluate the effect of transverse blowing of air on stability. We also 
note that while radial oscillations occur during nonisothermal formation, they are of lower 
amplitude than in the isothermal case for the same given draw ratio. An increase in E is 
initially accompanied by an increase in oscillations and a decrease in the period (opposite 
to the case of isothermal drawing [12]). 

We also note that whereas there are no qualitative changes in the relation ~(i, t) in 
the case of isothermal formation with an increase in E [12], in the presence of heat exchange 
new maxima appear between sharp peaks in this relation beginning at about E = 185 (Fig. 2; 
E = 186, O = 7). These maxima again disappear at E ~ 336 and there is a simultaneous decrease 
in the amplitude of the oscillations. 

2. Along with the change in the range of stability due to heat removal, there is a change 
in the parameters of the dynamic processes inside this region. For example, numerical solution 
of (1)-(3) was used in the case of stable formation to obtain the amplitude-frequency charac- 
teristic of a fiber with a radius which experienced small harmonic oscillations of the ampli- 
tude % in the initial section. The amplitude of the response in the final section of the 
fiber is plotted off the y axis (Fig. 3) 

A = o ( I(~(1, t)l~dt/(~o~g). 
0 

(5) 

The dimensionless frequency of the oscillations m = m,L/V I (~, is the frequency) is plotted 
off the x axis. The value of A was determined after establishment of the oscillatory regime 
in the numerical solution of (1)-(3) for the case 0 # 0. Curve 1 shows data obtained in the 
nonisothermal case for 0 = 7, while curve 2 shows the amplitude of the response in the iso- 
thermal regime (O = 0) calculated by means of analytical solution of linearized problem (i)- 
(3) [3]. The reinforcement of the oscillations decreases substantially at nearly all moder- 
ate frequencies [w = O(i)] due to an increase in the viscosity of the fluid as a result of 
cooling. 

It is difficult to numerically study perturbations (m >> i). However, the asymptotic 
method of multiple scales [13] can be used in the present case to obtain analytical solutions. 
We thus calculated the shortwave sections of the amplitude-frequency characteristics of fibers 
formed under nonisothermal conditions and disturbed by I) oscillations of the inlet section 
of the fiber; 2) oscillations of melt feed velocity; 3) oscillations of fiber winding velocity 
on the takeup reel; 4) oscillations of heat flux on the fiber surface. 
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Here we will examine an arbitrary law of heat removal not necessarily coinciding with 
(2) (due to allowance for natural convection and transverse blowing of air) and we introduce 
the perturbation of heat removal v: 

q~ = q ~ ,  4- ~ (x, t). ( 6 )  

Assuming ~, g, X, and v/qw* t o  be s m a l l  compared t o  u n i t y  and i n s e r t i n g  (4)  and (6)  i n t o  ( 1 ) .  
after linearization we obtain the following system of dimensionless equations for the per- 

turbations: 

0__~_~ + V, O~ + V, 06 O, 
Ot Ox 2 Ox 

O ~ + 2 a ~ V  ~ O~ 4 - 2 a ~ V , ? + a , V ~ ? +  (7)  
Ox ' Ox 

Oa, V, 
T, 

0 6 (  OT,a,V, ) 
-t- -~x T2 * ~- 2a,V,. 4- 2a, V, +a,V, Ox"O"6 

O? a? 4- 2v T, --O-i- + T,V, V,T', (~ + ~ + V) . . . . .  
�9 " O x ,  a ,  

--0, 

Here the fiber radius is referred to the steady value on the takeup reel a z = a 0/~'E, the ve- 
locity is referred to V z, the temperature is referred to the maximum value T o (the temperature 
of the melt at the beginning of the fiber), the heat-flux perturbation is referred to pcV I. 
T0az/L, the coordinate x is referred to L, and time is referred to L/V z. The stationary dis- 
tributions with respect to x denoted by an asterisk are considered to be known. 

In the case of harmonic perturbations of the initial fiber radius, the boundary condi- 
tions for (7) will be 

=~osin~t, ~ = ? = 0 ,  x=O; 6=0 ,  x = l .  (8) 

There are two length scales in the problem being examined: L and ~ = Vl/~ , - the length of 
the fiber and the characteristic wavelength of the perturbation. Since ~ = L/L >> i, the 
scale of the stationary distribution is much larger than the scale of the perturbation. Thus, 
in reality a perturbation located at a given moment near the point x evolves over distances 
on the order of its own characteristic dimension as if the steady-state configuration did 
not change along x and instead retained a given fixed value. Such a situation can be satis- 
factorily described by the method of multiple scales [13]. 

We introduce the new variables: 

�9 = ~ t , x = x , X = ~ - '  C a~ (9) 
d v, 

Here the small parameter ~ = m-z << i. The physical pattern described is such that the per- 
turbations are functions of two space variables: "rapid" - X and "slow" - x, as well as of 
the time T. Changing over to the new variables, we convert Eqs. (7) to the form 

/ 
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o--4- + v ,  \ o x + v ; ' + - U  

oa,.v', o,, 

+ V, -'�9 ~~176 ) ~-. . . . .  ~(iaiV,v + a,V",V) + 
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@T,a,V, ' 2a, Vi~) +a,V, ( ~ a~ V, O~ 2 a~ 1 
T2 -}- 2a,V, ~ Ox 2 V~ OX -~- V. OxO~ + ~V~ 

O? ( �9 2~ T , ~ + T , V ,  ~ O? + V,1 0~, ~ _eV ,  T , ( ~ +  6+Y) = - - s - -  
�9 Ox OX ) a ,  

0213 \ 
�9 / = O, 

OX ~ . ! 

(10) 
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All of the coefficients connected with the steady-state configuration depend only on x, while 
the prime denotes differentiation with respect to x. The boundary conditions (8) take the 
form 

..... eosinz, ~ = = ? = 0 ,  x = O ;  ~=.: O, x = l .  (ii) 

In the case being examined, v ~ 0. 

We seek the solution of the problem in the form of asymptotic series 

= =~ + e=~ + e'~=~ + . . . .  1~ = I~ + ~[~= + e~13~ + . . . .  

? : T i + e Y 2 + e ~ ? 3 4 -  . . .  
(i2) 

Inserting (12) into (i0), as a result of successive inspection of terms of the principal orders 
and elimination of the singularities at X + ~ and �9 + ~, we find the solution with allowance 
for boundary conditions (ll). In particular, we obtain the solution for a perturbation of 
the radius of the fiber in the form 

=(x, t)=-:aoEV,(x)J(x)sin[co( t-- ~ ~ ) j , (  d~- [  

[ o ! v~(~)~(~).~]. J (x) =- exp -- - ~ -  T. (~) V~ (~) 
(13) 

Here the function ~ is the solution of the Riccati equation 

d~ ._ OV~ (x) ~2 (14)  
dx " 2T~(x) V~(x)  (x) - -  T , (x )  V ,  (x) 

w i t h  t h e  c o n d i t i o n  ~ = 0, x = 0. 

We did not use a specific form of the steady-state fiber configuration in constructing 
solution (13). Thus, (13) is also capable of describing isothermal formation if we take 0 = 
0, V, = E-(1-x), a, = V, -I/2 [2]. The result obtained here coincides with the high-frequency 
limit of the corresponding solution in [3]. Thus, in the isothermal case, perturbations of 
the fiber radius initiated in the initial section of the fiber will be reinforced E times 
and reach the takeup reel, where V, = i (accordingly, A = E2). 

Nonisothermality of the formation process and the associated change in melt viscosity 
have a significant effect on the evolution of perturbations. In accordance with (13), the 
amplitude of fiber perturbations on the takeup reel turns out to be lower than E by the factor 
J(1). In calculations with (13) and (14), we can use both numerically established steady- 
state solutions of system (i) and the analytical steady-state solution for drawing with cool- 
ing from a draw plate that was obtained in [14] for large values of viscous-flow activation 
energy 0. Calculations performed with the use of the solution in [14] at 0 = 7 showed that 
shortwave perturbations are almost completely suppressed and ~(i, t) 4 0(A + 0) due to the 
increase in melt viscosity resulting from cooling. Considering the data in Fig. 3, we see 
that suppression of high-frequency perturbations due to heat removal is significantly greater 
than for perturbations of moderate frequencies. (In the isothermal case, the response of 
the outlet section to perturbations of moderate and high frequencies is of the same order 
of magnitude.) 

In the case of perturbations of melt feed velocity, the boundary conditions for (i0) 
will be: 

c r  [3=[~osin~, x = O ;  15=0, x =  Ii 

while in the case of oscillations of winding velocity on the reel 

(is) 

a = l ~ - ~ ' =  O, x = O ;  13 = l~osin-~, x = :  1. (16) 

As before, ~ ~ O. 
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The solution for perturbations of fiber radius in the given case has the form 

ox ( i co 0 l 
~-=o "~ V ~ ~' ~ dx 2~ ~ ,  , 

Here i = 1 in the case of boundary conditions (15) and i = 2 for boundary conditions (16). 
Meanwhile, 

i 1 
o 

x I 

G (x) : [ s (~) c~/f s (~) a~, 
0 'o 

O 

R~ (x) = --  V .  ~ (-- OT,V,/T2, 4: 2a .V , /a ,+  2V,). 

(18) 

The function ~i(x) is the solution of Eq. (14) with the condition 

/ * ~- T , K i  --d~x 1|.=0 x = O. 

Solution (17) obtained for the isothermal case of course again reproduces the high-frequency 
limit of the corresponding solution [3] 

(x, t) = 2~~ { V , E c o s [ c o ( t - -  ~ i ~ * ) ] - - c ~  (20) 

[for boundary conditions (15)]. The amplitude of the response of the fiber radius to the 
perturbations decreases with an increase in the frequency m. 

Calculations performed with (14) and (17)-(19) and the steady-state solution in [14] 
showed that in the nonisothermal case high-frequency perturbations are almost completely sup- 
pressed by the increase in viscosity. 

Now let us turn to examination of the effect of high-frequency perturbations of heat 
flux on the fiber surface 

v =vosinv (21) 

in the absence of perturbations of the boundary conditions for velocity, radius, and tempera- 
ture. Perturbations of heat flux occur as a result of turbulence of the air flow created 
to intensify fiber cooling, instability of the temperature regime in the chamber, etc. The 
solution for perturbation of the fiber radius has the form 

~(x, t )--  2Vo V, 0 ( V, exp(-- i T,V,ud~l ) d ~ c o s [ ~ o ( t - -  i~*)]" 
, o r e  ' T .~ T~ ,G  , ~ o , 

(22 )  

Here the function u(x) is the solution of the equation 

du ~- T~V,u2 ~V,  2 ; u= O, x==O. (23) 
dx 2T~V, 

C a l c u l a t i o n s  performed with  the use of (22) and (23) and the  s t e a d y - s t a t e  s o l u t i o n  in [14] 
showed that at E = 16, 0 = 7, and ~ = i00, the amplitude of the fiber-radius perturbation 
on the takeup reel will be roughly v0/5. This value is significantly greater than in the 
previously examined cases of perturbations of radius and fiber feed and takeup velocities. 
However, in the present case as well, high-frequency perturbations are suppressed to a large 
extent due to the increase in viscosity with cooling. 

574 



Thus, in accordance with the results of the calculations and asymptotic analysis, the 
largest fiber defects created during formation under stable conditions should be due to ex- 
ternal perturbations with moderate frequencies. 

NOTATION 

t, time; x, coordinate reckoned along the fiber axis; f, cross-sectional area of the 
fiber (it is assumed that the fiber has a circular cross section of radius a); V, axial ve- 
locity in the fiber; T, temperature; p, p, c, density, viscosity, and specific heat of the 
melt; P, axial force in the fiber section; P0 and U, preexponential multiplier and viscous- 
flow activation energy; R, gas constant; qw, heat flux in the direction of an external normal 
to the fiber surface; ~, thermal conductivity of air; T~, temperature of air at infinity; 
Cs = 5.775 J/(m2.sec'deg4); ~, emissivity of the melt; $' and 61, parameters of friction and 
convective heat transfer in the boundary layer on the fiber surface; V 0 and VI, velocities 
of fiber feed and takeup (constant in the steady-state regime); L, fiber length (distance 
from the draw plate to the takeup reel); R I and C, ratio of the densities of heat capacities 
of the air and melt; A, amplitude of response; ~,, frequency of perturbations from an ex- 
ternal source (m = m,L/V~); a0, 60, ~0, amplitudes of external perturbations of radius, ve- 
locity, and heat flux; a, ~, y, perturbations of radius, velocity, and temperature; ~ = mt 
(here time is referred to L/VI); X, "rapid" variable; ~ = m -z, small parameter. The scales 
used in calculating similitude criteria were the corresponding steady-state values of radius, 
velocity, and temperature; E = VI/V 0, draw ratio; E,, critical value; N = (L/al) 2, where al 
is the steady-state value of the fiber radius on the takeup reel, equal to ao/~; Re = ViL/v ~, 
Pr = vl/~, Reynolds and Prandtl numbers (v I and ~ are the kinematic viscosity and diffusivity 
of air); Z = csT03L/(pc~V~); 0 = U/(RT0). Indices: *, stationary distributions of radius, 
velocity, temperature, and heat flux on the fiber surface; 0, values of a, V, and T in the 
initial section of the fiber; i, values of radius and velocity on the takeup reel. 
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